Well, in response to my second post.
If the rotor was operating in a vacuum (without aerodynamic forces), the flapping equation has a general solution as the following:
$\beta=\beta_{1 c} \cos \psi+\beta_{1 s} \sin \psi$
Where
β Blade flapping angle positive up
$\beta_{1 c}$ Longitudinal flapping angle
$\beta_{1 s}$ Lateral flapping angle
ψ Azimuth angle
With the absence of aerodynamic force the rotor will take up an arbitrary orientation in inertial space thus in effect acts like a gyroscope. Key word being acts.

Ref:

Leishman, J.G. (2006). Principles of helicopter aerodynamics. NY: Cambridge University Press

